26 research outputs found

    Personalization, Cognition, and Gamification-based Programming Language Learning: A State-of-the-Art Systematic Literature Review

    Full text link
    Programming courses in computing science are important because they are often the first introduction to computer programming for many students. Many university students are overwhelmed with the information they must learn for an introductory course. The current teacher-lecturer model of learning commonly employed in university lecture halls often results in a lack of motivation and participation in learning. Personalized gamification is a pedagogical approach that combines gamification and personalized learning to motivate and engage students while addressing individual differences in learning. This approach integrates gamification and personalized learning strategies to inspire and involve students while addressing their unique learning needs and differences. A comprehensive literature search was conducted by including 81 studies that were analyzed based on their research design, intervention, outcome measures, and quality assessment. The findings suggest that personalized gamification can enhance student cognition in programming courses by improving motivation, engagement, and learning outcomes. However, the effectiveness of personalized gamification varies depending on various factors, such as the type of gamification elements used, the degree of personalization, and the characteristics of the learners. This paper provides insights into designing and implementing effective personalized gamification interventions in programming courses. The findings could inform educational practitioners and researchers in programming education about the potential benefits of personalized gamification and its implications for educational practice

    Exploring IoT in Smart Cities: Practices, Challenges and Way Forward

    Full text link
    The rise of Internet of things (IoT) technology has revolutionized urban living, offering immense potential for smart cities in which smart home, smart infrastructure, and smart industry are essential aspects that contribute to the development of intelligent urban ecosystems. The integration of smart home technology raises concerns regarding data privacy and security, while smart infrastructure implementation demands robust networking and interoperability solutions. Simultaneously, deploying IoT in industrial settings faces challenges related to scalability, standardization, and data management. This research paper offers a systematic literature review of published research in the field of IoT in smart cities including 55 relevant primary studies that have been published in reputable journals and conferences. This extensive literature review explores and evaluates various aspects of smart home, smart infrastructure, and smart industry and the challenges like security and privacy, smart sensors, interoperability and standardization. We provide a unified perspective, as we seek to enhance the efficiency and effectiveness of smart cities while overcoming security concerns. It then explores their potential for collective integration and impact on the development of smart cities. Furthermore, this study addresses the challenges associated with each component individually and explores their combined impact on enhancing urban efficiency and sustainability. Through a comprehensive analysis of security concerns, this research successfully integrates these IoT components in a unified approach, presenting a holistic framework for building smart cities of the future. Integrating smart home, smart infrastructure, and smart industry, this research highlights the significance of an integrated approach in developing smart cities

    Dynamic S-BOX using Chaotic Map for VPN Data Security

    Full text link
    A dynamic SBox using a chaotic map is a cryptography technique that changes the SBox during encryption based on iterations of a chaotic map, adding an extra layer of confusion and security to symmetric encryption algorithms like AES. The chaotic map introduces unpredictability, non-linearity, and key dependency, enhancing the overall security of the encryption process. The existing work on dynamic SBox using chaotic maps lacks standardized guidelines and extensive security analysis, leaving potential vulnerabilities and performance concerns unaddressed. Key management and the sensitivity of chaotic maps to initial conditions are challenges that need careful consideration. The main objective of using a dynamic SBox with a chaotic map in cryptography systems is to enhance the security and robustness of symmetric encryption algorithms. The method of dynamic SBox using a chaotic map involves initializing the SBox, selecting a chaotic map, iterating the map to generate chaotic values, and updating the SBox based on these values during the encryption process to enhance security and resist cryptanalytic attacks. This article proposes a novel chaotic map that can be utilized to create a fresh, lively SBox. The performance assessment of the suggested S resilience Box against various attacks involves metrics such as nonlinearity (NL), strict avalanche criterion (SAC), bit independence criterion (BIC), linear approximation probability (LP), and differential approximation probability (DP). These metrics help gauge the Box ability to handle and respond to different attack scenarios. Assess the cryptography strength of the proposed S-Box for usage in practical security applications, it is compared to other recently developed SBoxes. The comparative research shows that the suggested SBox has the potential to be an important advancement in the field of data security.Comment: 11 Page

    Investigating the non-work antecedents of workplace deviance

    Get PDF
    Deviance in the workplace, which has a huge destructive and harmful impact on the organization, is of key concern to academicians and practitioners. Existing literature focuses on the work-related antecedents of workplace deviance. However, the non-work-related antecedents have received little attention. Hence, the present research attempts to understand, the non-work antecedents that aggravate deviant behavior among employees at a workplace. The Gioia qualitative research approach was used to understand, examine, analyze, and interpret the views of respondents. A semi-structured interviewing technique was adopted. The respondents were encouraged to share their own experiences, thoughts, and understanding regarding the phenomenon. A sample of 25 experienced respondents from public and private organisations in Pakistan were interviewed. The results indicate that commuting factors (road hindrances, conflict behaviors, traffic discipline, and over-speeding), social factors (family-work conflict, and disturbed social relations), and an individual's lifestyle (attitude, physical inactivity, and sleep deprivation) are the contributing factors pertaining to the non-work antecedents of workplace deviance. The current study contributes to the literature by focusing on the non-work antecedents of workplace deviance

    Electrokinetic Desalination of Compound Building Materials by Applying Electric Field

    Get PDF
    Damaging of building materials is directly connected to the salt crystallization. The present research is based on removal of NaCl from compound building materials, where a direct current (DC) electric field was applied to the mortar plus bricks system. The main objective of this work is to investigate the electrokinetic desalination methodology that can provide sufficient removal of salts. pH neutralization in the surrounding of mortar plus bricks system is crucial to obtain sufficient desalination. For this purpose, the electrodes across the brick were inserted in kaolin clay mixed with buffer agents to suppress the pH changes. Most of the experiments were performed with kaolin clay and sponge. The concentration of chloride ions and sodium ions in all the segments and clay poultice was measured using argentometric titration method and flame photometer, whereas the pH variations in the entire system was measured by using pH indicator papers. The electrokinetic desalination was found to be an efficient method as 86 % removal of chloride and 80 % removal of sodium was achieved

    Effect of electrokinetic treatment time on energy consumption and salt ions removal from clayey soils

    Get PDF
    Electrokinetics effectively removes contaminants, but its field-scale applications are limited mainly due to its high energy cost. In previous studies, the energy consumption was determined either by changing the soil’s specimens initial salt concentration while keeping the treatment time fixed or by changing the treatment time and keeping the same initial salt concentrations for all the specimens. Since both the initial salt concentration and treatment time are important parameters in determining reclamation cost, therefore, in this study, the soil specimens intentionally contaminated with different concentrations of sodium chloride (NaCl), i.e., varying from 3.7 to 15.5 g kg−1, were exposed to a constant DC electric field of 1 V cm−1 for different time durations, i.e., varying from 6 to 72 h. The results show that electroosmotic flow (EOF) was directed from the anode to the cathode and higher for specimens contaminated with relatively low salt concentration, i.e., up to 7.6 g kg−1. Therefore, for these specimens, due to the combined effect of electroosmosis and electromigration, the removal of Na+ was higher than the Cl−. However, for the specimen contaminated with a higher salt concentration, i.e., 15.5 g kg−1, the Cl− removal exceeded Na+ due to the marginalization of EOF. Regardless of initial salt concentration, the electroosmotic flow and salt ions removal rates decreased with increasing treatment time, which might be attributed to the development of acidic and alkaline environments in soil. The collision of acidic and alkaline fronts resulted in a large potential gradient in a narrow soil region of pH jump, diminishing it everywhere else. This nonlinearity in the electric potential distribution in soil reduced the EOF and electromigration of salt ions

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Controller design for a pilot-scale heating and ventilation system using fuzzy logic approach

    No full text
    In this paper, a Single–input fuzzy logic controller (SIFLC) is designed and applied on a nonlinear heating and ventilation plant VVS-400 developed from Instrutek, Larvik, Norway. VVS–400 is modeled using Auto–regressive with exogenous input (ARX) model structure and linear black–box technique. The proposed SIFLC offers significant reduction in rule inferences and simplify the tuning of control parameters. To verify its effectiveness, this control method is simulated with an approximated VVS–400 model. An approximated VVS–400 model is obtained using System Identification toolbox in Matlab. The SIFLC provides several advantages over conventional fuzzy logic controller (CFLC) due to its simple inference rule mechanism, require very minimum tuning effort and minimizing the computational time to accomplish the controller algorithm. Simulations validate the equivalency of both controllers. Results reveal that SIFLC and CFLC have almost similar output performance. However SIFLC requires very minimum tuning effort and has less computational time
    corecore